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SPECTRAL ELEMENT DISCRETIZATION 
OF THE MAXWELL EQUATIONS 

F. BEN BELGACEM AND C. BERNARDI 

ABSTRACT. We consider a variational problem which is equivalent to the elec- 
tromagnetism system with absorbing conditions on a part of the boundary, 
and we prove that it is well-posed. Next we propose a discretization relying 
on a finite difference scheme for the time variable and on spectral elements 
for the space variables, and we derive error estimates between the exact and 
discrete solutions. 
RESUMm. On considere un probleme variationnel equivalent aux equations de 
17l'ectromagn6tisme avec conditions aux limites absorbantes sur une partie de 
la fronti6re, qu'on prouve etre bien pose. Puis on propose une discretisation 
de ce probleme par schema aux diff6rences finies en temps et elements spec- 
traux en espace, et on etablit des estimations d'erreur entre solutions exacte 
et approch6e. 

1. INTRODUCTION 

The aim of this paper is to analyze a spectral element discretization of the 
time-dependent Maxwell equations in a two- or three-dimensional bounded domain, 
when the boundary is made of two connected parts: the first one is absorbing, the 
second one is conducting. Indeed, much work has been done for the finite element 
discretization of such a problem, both in the standard version (see for instance 
[ADHRS], [Bo], [H] and the references therein) and in the p and h - p versions (see 
[Ml] and [M2]). But it seems that the spectral discretization has less been studied 
in this framework (see [ABG], [BG]). 

In contrast to the finite element method, spectral techniques are known for their 
infinite accuracy, in the sense that the order of convergence is only limited by the 
regularity of the exact solution: this results from the approximation by high degree 
polynomials. And solving the Maxwell system with spectral accuracy is important 
in a number of applications, especially when it is coupled with other equations 
(Vlasov, Schr6dinger, ...), in order to ensure that a poor approximation of the 
electromagnetic field does not pollute the other unknowns. 

The drawback of the pure spectral method is that it allows one to work only 
in tensorized domains, i.e. rectangles and rectangular parallelepipeds. But the 
spectral element method allows one to handle more general geometries, more pre- 
cisely, domains that admit a decomposition into disjoint tensorized subdomains. 
The extension to completely general types of geometry is currently used; it relies 
on transformations of these subdomains and will not be considered here, since it 
just adds too many technicalities to the proofs for similar results. 
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In this paper, we first write the Maxwell equations in a decoupled second or- 
der travelling wave form. Indeed, a large number of forms and models exist for 
the Maxwell system, see [RS]; we choose this one for its generality. We present 
the variational formulation of this problem that we intend to discretize. Such a 
formulation involves a nontrivial subspace of functions with square-integrable curl, 
and its equivalence with the initial partial differential equations relies on a density 
result which is established in [BBCD]. 

The space discretization is obtained by applying a Galerkin method with numer- 
ical integration to the variational formulation. The time discretization is performed 
thanks to the Newmark and leap-frog schemes, as is standard for Maxwell's equa- 
tions. Then, we prove that, if a Courant-Friedrichs-Levy condition is satisfied, the 
full discrete problem has a unique solution, and it is stable in the sense that an 
appropriate norm of the discrete solution is bounded by quantities depending only 
on the data. 

Thanks to this stability property and to the consistency of the time scheme, 
deriving error estimates only requires polynomial approximation properties in the 
variational space. We prove them by extending the finite element arguments of 
Nedelec [Ni] to the spectral case. The final estimates are of spectral type with re- 
spect to the space discretization. So the method provides an accurate discretization 
of the Maxwell equations, which could still be improved by combining the spectral 
element discretization with a higher order time scheme. 

An outline of the paper is as follows. In Section 2, we recall the Maxwell system, 
we write the equivalent variational formulation and we study its well-posedness. In 
Section 3, we present the space-discrete problem and the full discrete problem, and 
we prove the stability of the latter. Section 4 is devoted to polynomial approxima- 
tion results, first in a cube, and second with domain decomposition. In Section 5, 
we prove the error estimates between the exact and the discrete solution. 

2. THE CONTINUOUS PROBLEM 

Let Q denote a bounded domain in Rd d = 2 or 3, such that its boundary is 
made of two connected parts (see Figure 1): 

* the exterior one F, (a stands for absorbing) is rectangular, 
* the interior one IF (c stands for conducting) is Lipschitz-continuous. 
We denote by n the unit outward normal vector to Q on Fa U Fr. 

The problem and its variational formulation. First, for the three-dimensional 
case, we consider the Maxwell-Ampere system in the domain Q: 

(2.1) -E Ate +-curl b j, 
/1- 

(2.2) divb = O, 

the Faraday equation 

(2.3) atb + curl e = 0, 

and the Gauss law 

(2.4) E dive = p, 
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where the unknowns are the electric field e and the magnetic field b. The dielectric 
permittivity E and the magnetic permeability [u are assumed to be positive con- 
stants. The data are the current density vector j and the charge density p. These 
equations are provided with the perfectly conducting boundary conditions on IF 

(2.5) e x n -0, 

and with the Silver-Miiller boundary conditions on Fa 

(2.6) (e- bxn) xn=O. 

In this paper, we are interested in solving the Cauchy problem, so we consider the 
following initial conditions in Q: 

(2.7) elt=o = eo and blt=o = bo. 

The equations are the same in the two-dimensional case if all derivatives with 
respect to the third variable are taken equal to zero and with the convention 

b= (b2), e= (Q. 

By differentiating equation (2.3) with respect to the time t and combining with 
the curl of equation (2.1), we derive 

Eatb + -curl (curl b) = curl j. 
/ 1- 

Similar transformations on boundary and initial conditions lead to the system 

( E At2 b + 1 curl (curl b) = curl j in Q, 

(2.8) J (curlb) x n = u (j x n) on F>, 
| (- ii(atbxn)+curlb) xn=,u(j xn) on Fa, 

blt=o = bo and (atb)t=0 = -curleo in Q, 

where the only unknown is now the function b. 

FIGURE 1 
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Conversely, let b be any solution of (2.8). Then, if b is smooth enough (i.e. if its 
curl belongs to L2(Q)3), the function e is uniquely defined by (2.1) and the initial 
condition: 

E ate= I curl b-j in Q, 

ejt=o = eo in Q. 

So, it is also readily checked that equation (2.3) holds. Next, with the assumption 

div bo = 0 in Q, 

taking the divergence of (2.3) yields (2.2). Also, (2.4) is a consequence of the 
conservation law for the charge density 

fatp+ divj=0 inQ, 

{Pjt=o = E div eo in Q. 

Finally, from the two assumptions 

eO x n = 0 on IF, (eo- boxn)xn=O onfa,, 

we recover the boundary conditions (2.5) and (2.6). So, all the equations (2.1)-(2.7) 
are satisfied. 

Consequently, from now on, we only consider the system (2.8). Its analysis is 
well-known, see for instance [RS, ?3]; however we prefer to recall it in view of the 
analogous arguments that will be needed for the discrete problem. 

Let us recall that the space H(curl, Q) is the space of functions in L2(Q)3 whose 
curls belong to L2(Q)3. It is provided with the norm 

IV IIH(curl,Q) ( VL2 (Q)3+ Ilcurly L2 (Q)3) 

We introduce its subspace V(Q) of all functions in H(curl,Q) whose tangential 
traces on IF belong to L2 (F")2, provided with the norm 

IIVIIV(Q) 
( 
(lH(curl,Q) + lV X nl L2(rF)2) 

The density of D(Q) in H(curl, Q) is well-known, see [GR, Chap. I, Thm. 2.4]. 
However it does not yield the density of D(Q) in V(Q). We refer to [BBCD] for 
this last result. 

We are now in a position to write the equivalent variational formulation of system 
(2.8). It reads: find b in V(Q) such that 

(2.9) Vv E V(Q), X (at2b). v dx +- curl b. curl v dx 

+ 1fa((atb) x n) . (v x n) dr j. curl v dx. 

Of course, the initial conditions must be added: 

(2.10) blt=o = bo and (atb)jt=0 =-curleo in Q. 

Proposition 2.1. Let T be a positive real number. Assume that the function j 
belongs to L2(0, T; L2(Q)3) and that the initial data bo and eO belong to V(Q) 
and H(curl,Q), respectively. Then, any solution b of (2.8) in C?(O,T;V(Q)) n 
C1(0,T;L2(Q)3) is a solution of (2.9) in the distribution sense on (0,T), and of 
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(2.10). Conversely, any solution of (2.9) satisfies the first line of (2.8) in a distri- 
bution sense, the second line in H- (F)2 and the third line in L2 (F a)2. 

Proof. The first part of the proposition follows from the already quoted density 
result. The second part is derived by letting v in (2.9) run first through D(Q)3, 
second through the subspace of functions in H1(Q)3 vanishing on F,a and third 
through the subspace of functions in V(Q) vanishing on IF. ? 

We now intend to prove that problem (2.9)(2.10) is well-posed. However, the 
arguments are quite technical. 

A priori estimate. This key estimate requires some regularity of the data. 

Proposition 2.2. Let T be a positive real number. Assume that the data bo and 
eO belong to H(curl, Q), and that the function j belongs to H1(0, T; L2(Q)3). We 
set 

(2.11) 1.(j) = 16p1(t fI (atj )(S) |L2(Q)3ds + sup llj(S) ||2(Q)3). 
Jo 0~~~~~<s<t 

Then, any sufficiently smooth solution of problem (2.9)(2.10) satisfies for all t, 
0 < t < T, 

(2.12) 

? (atb)(t) 122(Q)3 + 11(curlb)(t)-122(Q-3 +-2 f J (Ot b x n)(s) 112(- )2 ds 

< sjj) + 2(- 
3 

fcurl bo | L2 (Q)3 + 2c Ilcurl eO||L2 (Q)3). 

Proof. Taking v = atb in (2.9) and integrating with respect to t yield 

2 1 (Ztb) (t) 122(Q)3 + 21 (curlb)(t) 12(Q)3 + J Ij(Otb x n)(s) 122(-a)2 ds 

it 1 
< ,/Ij j curl (at b) dx ds + - II curl eo II L2(Q)3 + curl bO |2(Q)3. 

Next, we integrate by parts with respect to t the first term in the right-hand side: 

for any positive constant -y, 

jj Xj curl (atb) dx ds 

O~~~~ 
Q 

< 1 II (curl b) (s) 112L2(Q)3ds + I Ij (0tj) (S) l L22(Q)3ds 

+ 
I 

I I (curl b) (t) 112 (Q)3 + ?[ ll j (t) 2(Q)3 

+ 
I 

IIcurlbo 1L2(Q)3 + J|lj t=o1 L2(Q)3 

Inserting this in the previous inequality leads to 

11 (curl b) (t) 2 (Q)3 < j (curl b) (s) L2(Q)3 ds + 4p2 j 1 (a j 2(Q)3 ds 

+ 4p2 IIj(t)I2 L2(Q)3 + 42 jt11 | L2 (Q)3 

+ 2c,t IIcurle 0 L2(Q)3 + 3 ||curlbo0 L2(Q)3 
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So, denoting by D(t*) the maximum of 11(curlb)(s) 12 2(Q)3 for 0 < s < t* and 
taking y= 1/2t* yields 

I t~~~~~~~* 
1 D(t* ) < 8/_2t* X 1(Otj) (s) 11 2L2 (Q)3 ds 

+ 8/i2 sup I(s) L2(Q)3 + 2ctI curl eo L2(Q)3 + 3I curibbo L2(Q)3. 
0<s<t* 

This gives the estimate for D(t*), and the other ones follow. F] 

Existence and uniqueness results. Problem (2.9)(2.10) is very similar to one of 
the problems in Lions and Magenes [LM, Chap. III, (8.3)(8.4)]. However, the proof 
of [LM, Chap. III, Th. 8.1] would only be valid in our case if fQ j . curl v dx were 
replaced by fQ curl j . v dx. So we now adapt this proof to problem (2.9)(2.10). 

Theorem 2.3. Let T be a positive real number. Assume that the data bo and. eO 
belong to V(Q) and that the function j belongs to H1(0, T; L2(Q)3). Then, problem 
(2.9)(2.10) has a unique solution b satisfying 

(2.13) 
b E L2(0, T; H(curl, Q)), atb E L2(0, T; L2(Q)3), atb x n E L2(0, T; L2(ra )2). 

Moreover, this solution is such that 

(2.14) b E C?(0, T; H(curl, Q)), atb E C?(0, T; L2(Q)3)) 

and satisfies (2.12). 

Proof. Since V(Q) is a subspace of L2(Q)3, it is separable. So we can introduce an 
ordered basis (wm)m of V(Q) (in the sense that the linear combinations of the wm 
are dense in V(Q)). We denote by VTr the subspace spanned by wo, ... and wi. 
Then, we look for a solution b, in L2(0, T; V1) of the problem: 

(2.15) Vv, E Vm, j(at2bm).vm dx+- j curlbm.curlvm dx 

+ f ((atbm) x n) . (vm x n) dr j. curl v,n dx, 

with the initial conditions 

(2.16) bmIt=o =rmbo and (a9tbm)t=o= -curl (7rmeo) in 0 

(7rm denotes the orthogonal projection operator from V(Q) onto Vm). Writing 
bm(t) = E /m30 0S(t) w. and denoting by B the vector with components j3S, we 
observe that the previous problem (2.15)(2.16) is equivalent to a linear system of 
ordinary differential equations of the type 

{B" + AB + CB' = J, 
BIt=o = Bo and Bt=o = Bl. 

So it has a unique solution bm. By the same arguments as in the proof of the 
previous Proposition 2.2, this function bm also satisfies (2.12) and, in particular, 
there is a constant c, depending only on the data, such that 

IbmIIL2(0,T;H(cur1,Q)) + IaotbmInL2(0,T;L2(Q)3) + ||0tbm X nIIL2(0,T;L2(F )2) < C. 

Consequently, there exists a subsequence, still denoted by (bm)m, converging to a 
function b weakly in L2(0, T; H(curl, Q)) such that (t bm) m also converges to atb 
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weakly in L2(0, T; L2(Q)3) and (atbm x n)m also converges to atb x n weakly in 
L2(0, T; L2(Fa )2). Passing to the limit in (2.15) (2.16) now yields that b is a solution 
of (2.9)(2.10). Its uniqueness and further regularity easily follow from (2.12). C] 

The regularity properties of problem (2.9)(2.10) can be derived from Costabel 
and Dauge [Co][CD] (see also Moussaoui [Mo] for two-dimensional results). They 
are closely linked to the regularity of the Laplace, Dirichlet and Neumann equations 
in the same domain. 

3. THE DISCRETE PROBLEM 

We first make precise the geometry in which we work, and present the space 
discretization that relies on the standard spectral element method. Next we write 
the full discrete problem, we check that it is well-posed, and we give a stability 
estimate. 

In what follows, we assume that Q is a polyhedral domain in I3 such that there 
exists a finite number of (open) rectangular parallelepipeds Qk, 1 < k < K, with 
edges parallel to the coordinate axes, satisfying 

K 

(3.1) Q= uQk and QknQk= 1 < k < k' < K. 
k=1 

As is well-known in the spectral element technique, this is fairly representative for 
general geometry since transforming rectangular parallelepipeds onto more general 
subdomains by a regular mapping adds only technical, not theoretical difficulties 
to the analysis. We make the following assumption on this decomposition. 

Assumption 3.1. The intersection of Qk and Qk, 1 < k < k' < K, if not empty, 
is either a corner or an edge or a face of both Qk and Qk' 

Space discretization. Now, for any nonnegative integer n, we introduce the space 
InK(Qk) of polynomials with degree < n with respect to each variable. Then we fix 
a positive integer N and we define the discrete space 

(3.2) VN(Q) {VN E H(curl, Q); VN IQk e I2NN(Qk)3 1< k < K}. 

It is readily checked that this is a subspace of V(Q), so the discretization is con- 
forming (we recall that such a discrete space is proposed by Nedelec [N2, Def. 6] in 
the finite element framework). 

We start from the Gauss-Lobatto formula on -1, 1[: if (o =-1 and (N 1, 
there exist N - 1 nodes (j, 1 < j < N - 1 (which are the zeros of the first derivative 
of the Legendre polynomial of degree N) and N + 1 weights pj, 0 < j < N, such 
that the following equality holds for all polynomials @ of degree < 2N - 1: 

1 ~N 

(3.3) f (() d( N (ej) pj. 

By translation and homothety, these nodes are mapped onto Qk in each direction; 
we denote them by xjk, yk and zj and the corresponding weights by px,k, py,k andp , Tt 
and p".This allows us to define the discrete product on all functions u and v 
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continuous on each Qk: 

K N N N 

) (( , ))N E E E E U(Xik, yk) Zk) (Xik yk Zk) px,k py,kpz,k 
k=1 i=O j=O t=0 

Similarly, let Fm, 1 < m < M, be the faces of the Qk that are contained in ]F. 
Denoting by ocQ and T, 1 < m < M, the tGangential coordinates of the nodes 
that belong to F7t, and by pa"m and p;"m the corresponding weights, we define the 
discrete product on functions continuous on each face F,: 

M N N 

(3.5) ((U) V))N,F, = L(Ti , )v(J T) pci p I, 
m=1 i=0 j=O 

We also define the associated seminorms 

(3.6) I|U||N = ((u),U))2, L|ULN,ra = ((U) ) 2 

We denote by 4k the Lagrange interpolation operator (with values in IP)N(Qk)) on 
the grid 

(3 7) -N {(xi yjy IZf ), 0 < i j) 
? 
< N}, 

and by 'N the Lagrange interpolation operator on Uk-=l N 
This allows us to write the semidiscrete problem, for a.e. t in ]0, T]: find bN in 

VN(Q) such that 

(3.8) VVN E VN (Q), E((bN, VN))N + - ((curl bN,curlvN))N t ~~~~~~1- 

+ ?((atbNx n, VN X n))N,Fa ((j, curlVN))N- 

We must also enforce the initial conditions: 

(3.9) bN It=o bON and (atbN)t=O = -curl eoN in Q, 

where boN and eoN are approximations of bo and eo in VN (Q). 
Let us recall [BM, (13.20)] the positivity property, which holds for any polyno- 

mial (PN with degree < N: 
N 

(3.10) I(PNH 2(112 < ? 1) < j)p3 < 3 ||(N 12 
j=() 

By the same arguments as in the proof of Proposition 2.2 combined with the pre- 
vious positivity property of the discrete product, it is readily checked that there 
exists a constant c independent of N such that the solution bN of (3.8)(3.9) satisfies 

Ejj(0tbN)(t) L2(Q)3 + - ||(curl bN)(t) L2(Q)3 

(3.11) + 2 1 1 (atbN x n)(s) 112(2)2 ds 

< C (INj) + - flcurlboN 2(Q)3 + 2& ||curleoNNlL2(Q)3). 

So, problem (3.8) (3.9) has a unique solution in C1 (0, T; VN (Q)). 
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The fully discrete problem. Let Et denote the time step (we assume that Et < 1 
and that T = P8t). The idea is to define a sequence (bp )o<p<p such that bp 
approximates the solution b of problem (2.9)(2.10) at times p8t. We first take as 
initial conditions 

(3.12) bo = bON and bN = bON-Et curl eoN in Q. 
Next, we use a Newmark scheme to discretize the second derivative with respect 
to time, and a leap-frog scheme to discretize the first derivative. This leads to the 
problem, for 1 < p < P - 1: find bP+1 in VN(Q) such that 

N~~~~~~~~ 
VVN E VN() (( N 

N 
VN)) N + - ((curl bp , curlVN))N 

(3.13) (&t) 2 
'- 

+ c( N - _ X n,VN n f))N,ra = ((j(p6t),curlvN))N- 

This last equation can equivalently be written as 

E((bPN , VN))N + 2t ((bP+ 1X n, VN X n)) N r = ((j 
P V N)) N, 

where fp is known by the induction hypothesis. So, bP'+1 is the solution of a 
finite dimensional square linear system, and, from the positivity property (3.10), 
equations (3.12)(3.13) uniquely define the sequence (bp )o<p<p for any function j 
in C?([O,T] x Q). 

The scheme that we use is explicit with respect to the term ((curl bP, curl VN )) N, 

so a Courant-Friedrichs-Levy condition is necessary to ensure the stability of the 
problem. However, working with the Maxwell equations most often requires very 
small time steps, so that this condition is not restrictive in practical situations. 

A priori estimates. The arguments for proving the stability estimate are the 
discrete analogues of those in the continuous case see the proof of Proposition 
2.2. They make use of polynomial inverse inequalities that are well-known [BM, 
?5], but we choose to give a fine version of them in order to optimize the Courant- 
Friedrichs-Levy condition. 

Lemma 3.2. Any polynomial VN in VN(Q) satisfies the following inverse inequal- 
ity: 

(3.14) l|curlVN N ?< PN(Q) ||VNI N, 

where PN (Q) is given by 

(3.15) PN ) (N(N+ 1) + ) sup u-(k), 
wF 4 l<k<K 

and oX(k) is the ratio of the area of the boundary of Qk to its volume. 

Proof. First, on each Qk, it is proved in [BG, ?5] that any polynomial VN in PN(Qk)3 
satisfies 

N N N 

ZZZ (cur1vN)2(xik,yJ,)pX k k x, py,k pz,k 
i=O j=0 f=O 

N N N 

_(()2 CN ,X,X V2N(Xik yk kZ px,k y,k PZ,k 
i=O j=() f=0 
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where CN is the smallest possible constant in the inverse inequlity 

VfON CZPN(-1, 1)) Ik|9N||L2(-1,j) 
'<: CN |II(NIIL2(-,j). 

Equivalently, it is the largest eigenvalue A of the discrete Neumann problem: find 
ON in PN(-1, 1) such that 

VXN 
E PN(-1, 1), j 

N (() d A 
=A2 

Such a constant is evaluated in [AB, Remark 4.3]: 

N(N +1) 7r wf w2 1 N(N +1) wT 
CN T + + 2 (1 + A) A + O(N-4) < ?+ 

wF 12 2 45 NNv+ 1) 7T 4 

Proposition 3.3. Let T be a positive real number. Assume that the function j 
belongs to Co(] O, T] x Q). We set 

'Ky ( j) / 
9 (M6t 1p- (jIN) ((q + 1)8t) - 

(INj) ((q - 1)6t) 2 

Kp()=9 ,18T Z 2t 

(3.16) q=1 

+21 oi sup II (N jj) (q8t) 
11L2 

(Q)3). 

2 0<q<p 

Then, if the parameters N and 8t satisfy the inequality 

(3.17) 8t pN (Q) < 6/I) 

any solution of equations (3.12)(3.13) satisfies for all p, 1 < p < P - 1, 

(3.18) 

b ____1 2c4 bqjj1-bq 
t N 

1L2 (Q)3+4 | curl bP 
12 

L2 (Q)3+ 26t 
N 

- 
bN X n112 )2 

N Nt 
L Q3 4- N L E q1 8t X L2(Fa) 

< /,'P (i) + 9( 2 | curl bON 11L2 (Q)3 + 5E II curl eON 1L2(Q)3)- 

Proof. The idea is to take VN equal to bpNj1- bpN7 in (3.13). This yields 

151 || bp IN- 8 bt +-- cur1b II2 

- -((cur1(bp1 -VbP) cur1bP 1))N +-((cur1(bP - bP '),curlbp))N 

+ 28t C bp+1 - b4N 112 
IL 28t X N,Fa<? ((j (p8t) ul bj N b7)N . 
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Next we sum over p: 

bP+1 - bp 
p~c~- b+1j- bq-1 

11 6t IN12 + licurl bP+1 112 + 26t 4 IN -N Xn 11I2 

q=l~~~~~~~~~= 

3____II21 +28t 11 t 
< IIcuN +V-~ crbpj 

+ N cur1(b-|I) 2 ?| 
1 curl bP)N+2 

(3.19) 

p 

+ ((j (q8t), curl (bqN I- bq)1N 
q=1 

+6El curl eoN 12 1 I iul(l -b I2 _ 112 
N Njt+j(- l(bulb)) NN curlbl 

We have to compute 

p 

((j (q(t), curl (bqr I- -qN ) N 

q=1 

+ ((j (t) + ?i) ((+- j q)curb | 1) t 

+6 2 |ulb IN+2|curl (bq -N)I 

- (pt| ((i((p- 1)8t), curl|+1 (-bP) (N 

- ( 6t) j(O),curl b ))N 2 ((0)j curl N-(bl 

whence, for any positive y 

p 

~((j (q8t), curl (bqj1 - b- 

q=1~~~~~~ 

<t Llcurlb q1 2r+AP (j) + 112b~ ~+ crb~b)II2 
2/-t N__ I ul P 

+- curlb% r+ 1 NcIIcurl-bb)j b 

with 

A Irj) ,ut P4 1 
(ITNj) ((q + 1)8t) - (ITNj) ((q - 1)8t)2 

N 2 E-1 8t N 

NIi~t 22_N 
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Inserting this last inequality in (3.19) yields 

N_ 
6t 

112 
+ 1 

lcurlbP1 
2 + 28t N b bN x 12 C t N 2Ap N IIqE 28t XlNJ,F 

(3.20) < 2t - yI curlbN + AP (j) + 8) I curl (bpN+ -b)bp 

12 +4 )I2 + 712 
+llcurleoN N+-icurl (blN-bo) N+ urb 2 1N NNN N N 2 curl bo 

We use the inverse inequality (3.14) and (3.17) to derive 

7 1(1Pj1-b) 2 <7PN(Q) bP+1bP 2 < 7E bP+ -bp 2 
8p ||cur ( N N)IIN _ 8p 1N NIIN -8 || Et N) 

and the same inequality for bounding 4 
lcurl(bl-bo - Ib) 2. Since Et < 1, this gives 

(3.21) 

8 11 6t 112 + IIU2 blcu'lbP 112 + 26t 4 IN bN _Xn 112 
8 6t N+2A-t Nu~ N' At q1 28t X NJ,F 

8t 
P 

7 
< S curlb| + A (j) + 56 | curl eoN ? curlb%N |N 

q=0 

Next we take ry 1/2p*6t and we define Dp* as supO<q<p* licurlb qN 12 . We derive 

1yDp* < pEtT E-11 (INj)((q + 1)6t) -(INj)((q-1)6t) 2 
D _ A-t6tT S IIt 

q=1 

21A-t1111 712 + 2 sup 1(lNj)(q6t) + 56EcurleoN 2 + curlbo 
O<q<p* 

L 

and similar estimates for the other terms. So the desired result follows from (3.10). 

The stability estimate (3.18) is rather complicated, since we take all the con- 
stants into account. However P (j) can be bounded by K(iNj) for the function 
r, introduced in (2.11), up to a multiplicative constant. And, if we introduce the 
function bN,6t, which is affine on each interval [q6t, (q + 1)6t] and equal to bq in 
q6t, the left-hand side of (3.18) is the same as in (2.12), with b replaced by bN,6t 
As usual, the estimate (3.18) will also be used to establish the error estimate. 

4. APPROXIMATION RESULTS 

We only prove the polynomial approximation results in the three-dimensional 
case, since they are much simpler in the two-dimensional one. We begin with the 
basic case where the domain Q is a rectangular parallelepiped (which, in our case, 
would mean that F, is empty, see Figure 1). Then we extend the results to the case 
where Q is a union of rectangular parallelepipeds satisfying (3.1) and Assumption 
3.1. 

All the proofs in this section are derived from their finite element analogues; we 
refer to Nedelec [Ni, ?2] for the basic ideas, to Girault and Raviart [GR, Chap. III, 
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?5] and Amrouche, Bernardi, Dauge and Girault [ABDG, ?4.a] for some extensions. 
Note that, as in [N1], we introduce a slightly smaller space than VN(Q) for proving 
the approximation properties. However, the choice of VN (Q) in the discrete problem 
leads to a simpler implementation than for this new space, since only one tensorized 
grid is unisolvent for all components of the elements of VN (Q). 

Approximation in a rectangular parallelepiped. When Q is a rectangular 
parallelepiped, we denote by F the set of its (six) faces and by S the set of its 
(twelve) edges. Also Te stands for a unit vector tangential to any edge e. We use 
the notation I for the space of restrictions to K of polynomials with 
degree < nj with respect to the j-th -variable, 1 < j < 3. And, for a positive integer 
N, we introduce the space 

(4.1) XN(Q) = PN-1,N,N(Q) X PN,N-1,N(Q) X PN,N,N-1(Q)- 

With this space, we associate [Ni, Def. 6] the following operator rN: for any 
sufficiently smooth function v, rNv belongs to XN(Q) and satisfies 

Ve E S, Vq E PN-I(e), 

j(V - rNV) * re q dT = O, 

Vf E z, Vq E PN-2,N-1(f) X PN-1,N-2(f), 

(4.2) j(v - rNV) 
x n qdr = 0, 

Vq E PN-1,N-2,N-2(Q) X PN-2,N-1,N-2(Q) X PN-2,N-2,N-1(Q), 

j(v-rNv) . qdx=0. 

The operator rN is uniquely defined by (4.2) [Ni, Thm. 5]. Moreover, by exactly 
the same proof as in [ABDG, Lemma 4.7], it can be checked that, for any p > 2, it 
is continuous on 

V0P'(Q) {v E LP(Q)3; curlv E LP(Q)3 and v x n E LP(OQ)2}, 

and it is also continuous on all functions v in H(curl, Q) such that v x n vanishes 

on OQ. 
The idea for choosing the space XN(Q) rather than PN(Q)3 for the first approxi- 

mation result relies on the following lemma, which is proven in [Ni, Prop. 4] in the 

case of a tetrahedral decomposition. 

Lemma 4.1. The curl operator maps XN(Q) onto the space of divergence-free poly- 
nomials in 

(4-3) YN(Q) PN,N-1,N-1(Q) X PN-1,N,N-1(Q) X PN-1,N-1,N(Q)- 

Thanks to this lemma, the approximation result by polynomials in XN(Q) be- 

comes an obvious consequence of the approximation of divergence-free functions by 

divergence-free polynomials in YN (Q). Best approximation by divergence-free poly- 
nomials in PN-1 (Q)3 (which is contained in YN (Q)) is analyzed by Sacchi-Landriani 

and Vandeven [SlV, Thm. 2.5] for smooth functions in Ho (Q)3 n H4 (Q)3, however 

the same arguments imply analogous results for all functions in H4 (Q) . Next, it 

can be extended to all functions in HS(Q)3, s > 0, thanks to an interpolation result 
of Bernardi, Dauge and Maday [BDM, Thm. 3.2]. 
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Theorem 4.2. For any real number s > 0, there exists a positive constant c such 
that, for all functions v in H(curl, Q) such that curlv belongs to HS(Q)3, 

(4.4) inf | curl v- curlVN |L2(Q)3 < cNs Ilcurlyv 1 Hs (Q)3. 
VNE-XN(Q) 

Of course, estimate (4.4) is still valid when XN(Q) is replaced by any space 
containing it, for instance PN (Q)3. 

Remark. Similar arguments allow us to prove that (4.4) still holds when the function 
v and all approximation polynomials VN have their tangential traces equal to zero 
on one or several faces of Q. 

Approximation related to a conforming decomposition. Here we suppose 
that Q is a polyhedral domain in IR 3 such that there exists a finite number of (open) 
rectangular parallelepipeds Qk, 1 < k < K, satisfying (3.1) and Assurnption 3.1. 
The discrete space is then defined by 

(4.5) XN(Q) = {VN E H(curl, Q); VN IQk E XN(Qk), 1 < k < K} 

And we introduce the operator JZN acting on sufficiently smooth functions v: 

(JNV)lQk = rNv) 1 < k < K, 

where of course rk stands for the previous operator rN defined in (4.2) and trans- 
lated on the rectangular parallelepiped Qk. It is proved in [Ni, Thm. 5] that, if nk 

denotes the unit exterior normal vector to Qk, 

(/Nv)lQk x nk + (1/Nv)lQk, x nk' = 0, on 1Qk n 9Qk', 1 < k < k' < K, 

so that RZN maps sufficiently smooth functions into XN (Q). So, it remains to check 
the good approximation properties of the operator r . 

To prove these approximation estimates, we work on the cube E 1, 1[3, on 
which we define the operator rN by (4.2) (with Q replaced by E). The idea is to 
prove that, for all functions v in H(curl, E) with curl v in Hs(E)3, 

(4.6) | curl v- curl (rNV) |L2(E)3 < cNs l|curlyvI Hs()3; 

however we are also interested in the estimate in L2(Z)3 when v belongs to Hr(Z)3: 

(4.7) ||V -rNV L2()3 < c N V Hr(Z)3. 

We need several lemmas and as many corollaries. 

Lemma 4.3. For all s > 1, estimate (4.6) holds for all functions v in H(curl, E) 
with curlv in Hs(Z)3 and null tangential traces on the boundary of E. 

Proof. Anly function v satisfying the hypotheses of the lemma can be written 
+00 +00 +00 

( ) (1 _ 2 ) 1 _z2 )E El: axn Lm (X) L/ (y)LI (Z) ) 
m=O n=1 p=l 

+c0 +00 +00 

Vy(X Y ) = x2 - X2)(_ #E E a mnp LI -(x) Ln (y) L'(z), 
m=l n=0 p=l 
+00 +00 +oo 

( ) ( 2 )_2 )EamnP Lm (X) L (y) Lp (Z) 
m=1 n=1 p=O 
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so that w = curl v can be written 
+00 +00 +00 

wx(X) , Z) (1-x2) S 5b7 nP L(x)Lm(y)Lp(z), 
m=1 n=O p=O 

+00 +00 +00 

Wy(X, Y, Z) (1- 2) bm Sp S by Lm(x)L'(y)Lp(z), 
m=O n=1 p=O 
+00 +oo +oo 

wz(X,y,z) = (1 -z2) E E bmnP LmL(x)Ln(y)L'(z). 
m=O n=O p=l 

We now take q equal to (Lm(x)LLj(y)Lp(z), 0, 0), 0 < m < N-i 1 < n, p < N-1, 
in the third line of (4.2), and analogous choices for the second and third components, 
and we observe that v - rNv admits the same decomposition as v with all the 
coefficients amnp a7mnP and amnP for m, n, p < N - 1 equal to 0. This yields 

curly - curl (TNV) ( -1,0(x) 0 T(y) 0 T(z) x curl v- curl (NV) = Wx -fN 0 ) N1 0 WN-lx 

w T(x) 07 1,0(y) 0 T(z) Wy - WN1 0 WN 1 ?NlWY) 

Wz - fN(x) 1 ? (y) 1 ? 1,0(z)Wz 

where fN- 1, resp. fr ?, denotes the orthogonal projection operator from L2(-1, 1) 
onto PN-1(-1,1), resp. from Ho(-1,1) onto PN(-1,1) nHo(-1,1), and the expo- 
nent (x), (y) or (z) represents the direction in which the operator is applied. Thus 
standard tensorization arguments give the desired result. El 

Corollary 4.4. For all r > 2, estimate (4.7) holds for all functions v in H(curl, E) 
with v in Hr(Z)3 and null tangential traces on the boundary of E. 

Proof. Using the same decomposition for v as in the proof of the previous lemma, 
we observe that 

V- TNV = (VX - 7TN-1 N Nr?8 ? VRl()V 

v T1,0(x) 0 T(y) 0 F1,0(z) v 1,0(x) 0 F1,0(y) 07(y) v 1 
N 

, 
N0 1 oWN Vy,V V N OWN N-1) 

The end of the proof is the same as before. DH 

Lemma 4.5. For all s > 3, estmate (4.6) holds for all functions v in H(curl, E) 
with curlv in HS(E)3 and null tangential traces on the edges of E. 

Proof. The idea is to write 

V = Vo + E Vf, 
fCF 

where F here denotes the set of faces of E. Each Vf is chosen analogously to the 
next one which corresponds to the face x -1: 

(Vf)X(X,Y,Z) = 0, 

(Vf)y(X, Y, Z) = 2 VY y, z), 

1- 
(Vf)z(X,Y,Z) = 2 z v Y-,yz). 
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It must be noted that, due to the vanishing property on the edges, each Vf has a null 
tangential trace on other faces f' in X, f' I f, so that vo has null tangential traces 
on the boundary of E. Next, still on the face x =-1, it follows from the definition 
of XN (E) together with the vanishing condition on the edges that vy(-1, y, z) and 
vz(-1,Y,z) can be written as 

+00 400 

VY( vy , z) = (1 - z 2) C3c7'n Ln(y)Lp(z), 
n=O p=l 

+00 +00 

vz(-1, z, ) = (1 -y 2) EE c7n LI(y)Lp(z), 
n=1 p=O 

so that taking q successively equal to (L7,(y)L'(z), 0) and (0,L' (y)Lp(z)) in the 
second part of (4.2) yields that Vf - rNvf admits the same decomposition as vf 
with the coefficients CnP and CnP equal to O for n, p < N-1. As a consequence, 
setting Wf = curl Vf, we derive 

curl Vf - curl (rNvf) ((Wf)x - 0 1 i(Wf )x v 

(Wf)y - 7F10(y T (f-fN ()?fN) l(Wf)Yp) 

(Wf)z - 7F () 0 7F 1,( )( zv 

from which it is readily checked that 

l|curlvf - curl (rNvf) |L2(Z)3 < cNs II curl vf ||Hs (F)3. 

This is the right estimate for curl vf, but to derive it for curl v, we need a further 
investigation. We now introduce the operator frN from H1(-1, 1) onto PN(-1, 1), 
defined as follows: 

fN (P = 'FN' (? + X (_P+ XM) 
7F7FJ~~~~0 2 -1? 2 

0-x 1 +x 
with qo = lp - 2 o(-1) 

2 ~~~2 
And we use a modified decomposition curlv = WI + W2 + W3, where for instance 

(wl)x = (curlvo)x + (curlvfx-)x + (curlvf?+)x, 

(w2) x =(curlvfy-)x + (curlvf,+)x, 

(W3)X= (curlvfz-)x + (curlvfz+)x, 

ft? denoting the face t ?1. Then, it can be seen that 

(curlv - curl (rNv))x ((WI)x - 1() (Ny1 N) I(W)X) 

((W2)x - 
1fN ?N) I (W2)x) + ((W3)x - 1f,(x) N (W3)x 

However, replacing wr ? by its extension rN and noting that WfN-1 is equal to the 
identity operator on IP1(-1, 1), we derive that 

(curl V-curl (rNv)) = (curlv) -7r (x) 0wTY o07w-)1 (curlv)x)- 

So, by the same tensorization arguments as before, we obtain the desired result. F] 

We omit the proof of the corollary, which relies on similar arguments as the 
previous one. 
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Corollary 4.6. For all r > 2, estimate (4.7) holds for all functions v in H(curl, E) 
with v in Hr(Z)3 and null tangential traces on the edges of E. 

Lemma 4.7. For all s > 3, estimate (4.6) holds for all functions v in H(curl, E) 
with curlv in HS(Z)3. 

Proof. It is similar to the previous one, since the idea is to write 

V = Vo + E Vf + EVeV 

f fF eS 

where S denotes the set of edges of E. It can be checked that the contribution of 
the ve consists in replacing wr j by frN in the previous approximations of (w2)X and 

(W3)x. This proves the final estimate. DH 

Corollary 4.8. For all r > 2, estimate (4.7) holds for all functions v in H(curl, E) 
withy in Hr(Z)3. 

So the conclusion follows from Lemma 4.7 and Corollary 4.8: 

Theorem 4.9. For any real number s > 3 and r > 2, there exists a positive 
constant c such that: 

(i) For all functions v in H(curl, Q) such that (curl v) IQ, belongs to HS(Qk)3, 
1 < k < K, 

K 

(4.8) curlv - curl(RNV) L2(Q)3 < cNs E curlVI HS(Q)3; 

k=1 

(ii) For all functions v in H(curl, Q) such that V1Q, belongs to Hr(Qk)3, 
1 < k < K~ 

K 

(4.9) |- RAT-NV|L2(Q)3 < cNr E IIVIIH'(Qk)3. 

k=1 

In view of the discrete problem (3.13), estimates of the tangential trace in the 
L2(ra)2 norm are also needed. 

Theorem 4.10. For any real number t > 1, there exists a positive constant c such 
that, for all functions v in H(curl, Q) such that vxnlanr, belongs to Ht(QkOFa)2, 

1 < k < K, 
K 

(4.10) (V -RNV) x n IL2(rFa)2 < cN-' E ||V X nllHt(QkOna) 2 

k=1 

Proof. Here also, we work on the square E and establish the estimate, for instance, 
on the face f with equation x =-1. Indeed, it follows from the proof of Lemma 
4.5 extended to the case of nonzero tangential traces on the edges that 

(V - rNv)y(-1, y, Z) = (Vy - FN 1 ?N) v)(-1, y, z), 

(v - rNV)z(-Y, z) = (vz - o w$N) 1vZ)(-1, y, Z), 

which gives the estimate. D] 

Finally, we introduce the orthogonal projection operator IHc from H(curl, Q) 

onto VN(Q). To state its approximations properties, we also need the space 

Hs(curl,Qk) = {v E Hs(Qk)3; curlv E Hs(Qk)3}. 



1514 F. BEN BELGACEM AND C. BERNARDI 

Theorem 4.11. For any real number s > 0, there exists a positive constant c 
such that, for all functions v in H(curl, Q) such that vIQk belongs to HS (curl, Qk), 

1 < k < K, 

K 

(4.11) IIV - H1NVIIH(curl,Q) < cN E: IVIIH (curl,Qk) 
k=1 

Proof. Estimate (4.11) is true for s = 0 from the definition of Hc, and for s > 2 
from the inequality 

IIV - HNV IH(curl,Q) < lIV - RNV lH(curl,Q), 

and the previous Theorem 4.9. So, the general result follows thanks to an interpo- 
lation argument: the interpolation properties of the spaces HS (curl, Qk) can easily 
be deduced from [BDM, Thm. 3.1], by writing 

H (curl, Qk) {(v, w) E Hs(Qk)3 x Hs (Qk)3;W = curlv inQk}. 

Different degrees of polynomials on different elements can be used in order to 
take advantage of the local regularity (on each Qk) that is required in the previous 
theorems. The way to derive estimates that involve the local regularity of the 
function consists in subtracting from the nonconforming approximation operator 
R-N a lifting of the jump of the tangential traces on the interfaces. However we do 
not consider this extension here. 

5. ERROR ESTIMATES 

We are now interested in deriving error estimates for the solution b of problem 
(2.9)(2.10), more precisely between the sequence of its values at p8t and the se- 
quence (bN)o<p<p defined by (3.12)(3.13). It should be noted that, in any norm, 
this error is bounded by the sum of the errors coming respectively from the space 
and time discretizations. The space error comes from polynomial approximation 
and numerical integration of the data; the time error is linked to the consistency of 
the scheme. 

We must now define the norm for these estimates. In view of (2.12) and (3.18), 
for a sequence (vP)o<p<p, it reads 

I (P\ (=El VP?l -VP 
122 1 IlcrlPl 

1t L2(Q)3 + - curv 2 

(5 1) ~~~~~~~+ Et X lV 6t X nIIL2 Ja )2) 

q~=O 

It is the discrete form of the norm of 

C1(0, T; L2(Q)3) n C?(0, T; V(Q)) n H1 (0, T; L2 (Fa) 2). 
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Abstract estimates. As usual, the first idea consists in applying the time scheme 
to the sequence made of the b(p 8t), 0 < p < P. Thus, when subtracting problem 
(2.9) at time t = p8t, we obtain, for all v in V(Q), 

Jb((p + 1)6t) -2b(p8t) + b((p- 1)8t) d 1 j 
(t)2 vdx +- curl b(p6t) curlv(dx 

+ 
X b((p + 1) t-((p ) )) x n (v x n) dr 

I~A 28t 

=j i(pt) . curlvddx++ jE vdx+ jEp (v x n) dr 
Q Q F~~~~~~~~~~~~~a 

with 

EP = b((p + 1)8t) - 2b(p8t) + b((p- 1)6t) 
- (92b) (pt)), 

(8t)2 
EP 6(b((p+ 1)6t) -b((p- 1)t) - (&b)(p8t)) xtn 

For the sake of simplicity, we denote by FP(b) the quantity in V(Q)' defined by 

(FP (b) 
P 

v) = E b((p + 1)6t) 
- 2b(p8t) + b((p - 1)8t) 

+ - curl b(p8t) curl v dx 

+ f (b(p + 1)t) b((p )t) ) x n . (v x n) d, 

with obvious notation for the duality pairing. So we have proven that 

(5.2) (FP(b),v) =j i(pt) curlvdx+ jEP vdx+? E3p (v x n)dT, 
Q Q r~~~~~~~~~~~~~a 

and each term Ep represents a part of the consistency error. 
Similarly, with any sequence (WPN)o<p<p of VN(Q), we associate the polynomial 

quantity F (wp ) defined by 

N NN N? N 

( (P (8-2 ,VN))N - ( cur1 NP - CwcurIVN))N 

+ 
N N x nfVNXfn))N,r 

The idea consists now in computing FN (bP - RZN1b(p 8t)) . Indeed, since RN-lb 
belongs to VN_1(Q), we derive from the exactness of the quadrature formula and 
problem (3.13) that 

((FN(bPN - 7N-1b(P6t)),VN))N - ((j(p6t),curlVN))N - (FP(RN-lb),VN)- 
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Then adding (5.2) to this equality leads to 

(5.3) ((FN (bp -7ZN-lb(p8t)),VN))N 

- ji(p8t) . curIvNdx + ((j(p8t), curlVN))N 

+(FP(b-ZRNlb),VN)- Ep VNdx- Ep (VN Xn)di. 
X r~~~~~~a 

The first term in the right-hand side comes from numerical integration, while the 
second represents the approximation error. 

Stability estimates. Next, we write each bpN - RNlb(p 6t) as the sum rjp + rjp + 
rj2 + rjp, where: 

(i) The sequence (ijP)o<p<p is the solution of problem (3.13) with null right-hand 
side and initial conditions 

7lo = boN -TRN-lbo, 
8t 

(5.4) = boN -'RN-lbo-8tcurleON -J (&tRN-1 b)(s) ds. 

(ii) Each sequence (4jP)o<p<p i =1, 2, 3, has null initial values i= 41 =0 
and satisfies the following problem: 

VVN E VN(Q)) ((FN 1(?ij)7 VN))N = i7 

where the quantities gp are given by 

- j [b7N11(b((P + 1)6t) -2b(p8t) + b((p- 1)8t) 91 ~~~~~ ~~~~~(8t)2 
Vd 

_j E'p - VN dx, 

- jcurl ([11-RN-flb(p8t)) curlVNdx 

-j j(p8t) * curlvN dx + ((j(p8t), curlVN))N, 

cfETl b ((p +1)86t) - b((p - 1)86t) 
3 -6t 

) x n /n (vN x n) dr 

fEP (VN x n)dT. 
ra 

With each gp, we associate a function GP such that 

P*VNdx, GPP GP curl VNd, gdx P f G3P (VN x n)dr. 
Q Q r~~~~~~~~~~~~~~~~~~a 

Indeed, applying the stability estimate (3.18) to the sequence (jOP)o<p<p would 
yield 

11(ro)j1p < C jjcurlr?781L2(Q)3 + - ?| ); 
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however, a closer look at the proof of Proposition 3.3 leads to 

(5.5) ||(rP)|P <?c( icurl1r L2(Q)3 + Icurl (no -0) IIL2(Q)3). 

Applying this same estimate (3.18) to the sequence (ijP)o<p<p gives 

(5.6) (42P) li < cP i(G2), 

where RP (GP) is now defined by 

p-l Gq+l Gq-l 
_ ~~~~2 2O qq?p 

qN(GP) = M( LOII 2 E 2 IIL2(Q)3+ 4 sup JIG 2(Q)3) 

We must now prove similar stability properties for the sequences (?7P)o<p<p and 
(niP)o<p<p; however, they are solutions of simpler problems. The desired estimates 
are stated in the following lemmas. 

Lemma 5.1. If the parameters N and 6t satisfy (3.17), the following estimate holds 
for the sequence (iP)o<p<p 

p 

(5-7) | (rp) p < 2tTE G1 L2 (Q)3 
q=l 

Proof. It is of course similar to that of Proposition 3.3. As for (3.19), taking VN 

equal to il P+1-nlWP-1 yields 

P+l p ~ 2 P q?1 q-1 
?ll |2 P+112cur1 2 n1 2l2lt 4 ?l 1li 2 
11 ~N+ lu l N+6 '1qII 28t xf nN,F,. 

3 
4 1cr 4+1 _ P ) 11 

2 
N q . (Ilq+l _n 

Using (3.17) and the inequality (for ty> 0) 

p 

EYXJG'q .(lq+l_ lq-1) dx q=l 
E P+l p P-i ql q P 

< - ll ?l.1 +' 6? -8 _~Ij Ill ?li 12 + 6 _JG 2 

<81 1 IN + 8t | , IN + bt-| lL2 (Q 3, 

we derive 
p-Fl p p l q1 

Il r fi -112 
2 
_qIC--1121 

q-1 12 
8 

1l 't 
IIN + lCrl nPl l N + 26t E II 4 14X nN,F 2 8 &t N31p cu1P1 ?8 q=l "ii 

i 
- 

q+li qi 2tX2 ,7 

< bt 7|| t 6 IN + t-|GiL2(Q)3 

8Lq=d' &t q1l 
" 
Y~ 23 

Thus, the desired estimate follows from an appropriate choice of -y. C 

We skip over the proof of the second lemma, since it is very similar to the previous 
one. 
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Lemma 5.2. If the parameters N and 6t satisfy (3.17), the following estimate holds 
for the sequence ( _3 )o<p<p: 

(5.8) (rjP) 1 
2 <C L&8TZ JG" 1122F) 

q 1 

Conclusions. Estimating the right-hand members in (5.5)-(5.8) relies on the ap- 
proximation properties of Section 4 for the approximation error terms, on Taylor's 
expansion for the consistency error terms, and on the standard interpolation er- 
ror estimate [BM, Thm. 14.2] for the error due to numerical integration. This 
allows us to derive the estimate on 1bp- RNlb(p 6t) IlP and then the estimate on 

11(b(p6t) - bp)I1p by a triangular inequality. We omit these technical details, and 
only state the final result. 

Theorem 5.3. Let s be a real number > 2. We assume that, for 1 < k < K, 
(i) the function j satisfies 

(5.9) jjQk E H' (0,T; H'(Qk)3,t>s 

(ii) the solution b of problem (2.9)(2.10) satisfies 

bpQk E H2(0, T; Hs(Qk )3), curl blQk E Hl (0, T; Hs(Qk)3), 

(5.10) (b x n) (kOF E Hl(0,T;Hs(Qk 
_ 

a) ), 

and also 

(5.11) b E C4 (0,T;L2(Q)3), b x n E C3(0, T;L2(V )2). 

If, moreover, the parameters N and 6t satisfy (3.17) and the initial data are chosen 
such that 

(5.12) bON = TNbo and eoN = INeo, 

the following error estimate holds between this solution and the sequence (bp)o<p<p 
defined in (3.12)(3.13), for 1 < p < P - 1: 

(5.13) 
K 

11 (b(p 6t) - bp ) lp < cT(Ns Z( ||j Hll(o,T;Hs(Qk)3) + JJbJ sp,k) + T(6t)2 llbll ti) 

where 11 *sp,k, resp. 11 * Ilti, denotes the norm of the space in (5.10), resp. (5.11). 

Estimate (5.13) is optimal in the sense that the required regularity properties of 
the solution are minimal with respect to the order of convergence. Moreover, the 
space regularity that appears in the estimate is local on each Qk. So, using different 
degrees of polynomials on the subdomains would allow for a better convergence. 
The corresponding analysis is presently under consideration. 

The discretization is of order two with respect to the time variable and of spectral 
type with respect to the space variable: the exponent of N in (5.13) depends only 
on the regularity of the data and the exact solution. Since Et has to be chosen very 
small in order for (3.17) to hold, the global convergence rate seems very good: it 
behaves like c N4 for sufficiently smooth solutions. 
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